Skip to content

Overview

Name Dataset Description Scene Download Remark
coco_segmentation COCO See here Horizontal FL Click Here (under testing)
oxfordiiitpet_segmentation OxfordIIITPet See here Horizontal FL Click Here
sbdataset_segmentation SBDataset See here Horizontal FL Click Here
cityspaces_segmentation Cityspaces See here Horizontal FL Click Here
camvid_segmentation CamVID See here Horizontal FL Click Here
ade20k_segmentation ADE20k See here Horizontal FL Click Here
voc_segmentation PASCAL_VOC See here Horizontal FL Click Here

Details

coco_segmentation

coco

model

Model Name Non-Fed Performance NumPara Implementation
FCN_ResNet50 - -
UNet - -

supported partitioner

Name IsDefault Comments
IIDPartitioner yes
DiversityPartitioner Partitioning according to label diversity
DirichletPartitioner Partitioning according to dir. distribution of labels

oxfordiiitpet_segmentation

coco

model

Model Name Non-Fed Performance NumPara Implementation
FCN_ResNet50 - -

supported partitioner

Name IsDefault Comments
IIDPartitioner yes
DiversityPartitioner Partitioning according to label diversity
DirichletPartitioner Partitioning according to dir. distribution of labels

sbdataset_segmentation

coco

model

Model Name Non-Fed Performance NumPara Implementation
FCN_ResNet50 - -
UNet - -

supported partitioner

Name IsDefault Comments
IIDPartitioner yes
DiversityPartitioner Partitioning according to label diversity
DirichletPartitioner Partitioning according to dir. distribution of labels

cityspaces_segmentation

Usage

To use this benchmark, you need to manually download the raw data into the dictionary 'cityspaces_segmentation/cityspaces/'. The necessary file contains leftImg8bit_trainvaltest.zip (11GB) and gtFine_trainvaltest.zip (241MB).

model

Model Name Non-Fed Performance NumPara Implementation
FCN_ResNet50 - -

supported partitioner

Name IsDefault Comments
IIDPartitioner yes

camvid_segmentation

Usage

To use this benchmark, you need to manually download the raw data into the dictionary 'camvid_segmentation/CamVid/' from Kaggle. The downloaded .zip file should also be manually into 'camvid_segmentation/CamVid/'. The architecture of the benchmark should be like:

├─ camvid_segmentation
│  ├─ CamVid            //classification on mnist dataset
│  │  ├─ train       
│  |  │  ├─ xxx.png           // horizontal fedtask
│  |  │  ...  
│  │  ├─ train_labels   
│  |  │  ├─ xxx.png    
│  |  │  ...  
│  │  ├─ val
│  │  ├─ val_labels 
│  │  ├─ test
│  │  ├─ test_labels 
│  │  └─ class_dict.csv
│  |     
│  ├─ model
│  ├─ config.py
│  ├─ core.py
│  └─ __init__.py

model

Model Name Non-Fed Performance NumPara Implementation
FCN_ResNet50 - -

supported partitioner

Name IsDefault Comments
IIDPartitioner yes

ade20k_segmentation

ADE20K

model

Model Name Non-Fed Performance NumPara Implementation
FCN_ResNet50 - -

supported partitioner

Name IsDefault Comments
IIDPartitioner yes
DiversityPartitioner Partitioning according to label diversity
DirichletPartitioner Partitioning according to dir. distribution of labels

voc_segmentation

VOC

model

Model Name Non-Fed Performance NumPara Implementation
FCN_ResNet50 - -

supported partitioner

Name IsDefault Comments
IIDPartitioner yes