2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400 | class BasicLogger(Logger):
_LEVEL = {
"DEBUG": DEBUG,
"INFO": INFO,
"WARNING": WARNING,
"ERROR": ERROR,
"CRITICAL": CRITICAL,
}
def __init__(self, task, option, *args, **kwargs):
self.task_path = task
self.option = option
super(BasicLogger, self).__init__(*args, **kwargs)
self.output = collections.defaultdict(list)
self.output['option'] = option
self.current_round = -1
self.objects = []
self.temp = "{:<30s}{:.4f}"
self.time_costs = []
self.time_buf = {}
self.formatter = Formatter('%(asctime)s %(filename)s %(funcName)s [line:%(lineno)d] %(levelname)s %(message)s')
self.handler_list = []
self.overwrite = not self.option['no_overwrite']
if not self.option['no_log_console']:
self.streamhandler = StreamHandler()
self.streamhandler.setFormatter(self.formatter)
self.streamhandler.setLevel(self._LEVEL[self.option['log_level'].upper()])
self.addHandler(self.streamhandler)
if self.option['log_file']:
log_dir = self.get_log_path()
self.log_path = os.path.join(log_dir, self.get_time_string()+self.get_output_name('.log'))
if not os.path.exists(self.get_log_path()):
os.mkdir(log_dir)
self.filehandler = FileHandler(self.log_path)
self.filehandler.setFormatter(self.formatter)
self.filehandler.setLevel(self._LEVEL[self.option['log_level'].upper()])
self.addHandler(self.filehandler)
# options of early stopping
self._es_key = 'val_loss'
self._es_direction = -1
self._es_patience = 20
self._es_counter = 0
self._es_best_score = None
self._es_best_round = 0
def check_if_log(self, round, eval_interval=-1):
"""For evaluating every 'eval_interval' rounds, check whether to log at 'round'."""
self.current_round = round
return eval_interval > 0 and (round == 0 or round % eval_interval == 0)
def set_formatter(self, formatter:str):
"""
Set the formatter of the logger
Args:
formatter (str): the formatter of logger
"""
self.formatter = Formatter(formatter)
if hasattr(self, 'streamhandler'): self.streamhandler.setFormatter(formatter)
if hasattr(self, 'filehandler'): self.filehandler.setFormatter(formatter)
def time_start(self, key=''):
"""Create a timestamp of the event 'key' starting"""
if key not in [k for k in self.time_buf.keys()]:
self.time_buf[key] = []
self.time_buf[key].append(time.time())
def time_end(self, key=''):
"""Create a timestamp that ends the event 'key' and print the time interval of the event."""
if key not in [k for k in self.time_buf.keys()]:
raise RuntimeError("Timer end before start.")
else:
self.time_buf[key][-1] = time.time() - self.time_buf[key][-1]
self.info("{:<30s}{:.4f}".format(key + ":", self.time_buf[key][-1]) + 's')
return self.time_buf[key][-1]
def save_output_as_json(self, filepath=None):
"""Save the self.output as .json file"""
if len(self.output) == 0: return
self.organize_output()
self.output_to_jsonable_dict()
if filepath is None:
filepath = os.path.join(self.get_output_path(),self.get_output_name())
if not self.overwrite:
if os.path.exists(filepath):
with open(filepath, 'r') as inf:
original_record = json.loads(inf.read())
o_keys = set(original_record.keys())
output_keys = set(self.output.keys())
new_keys = list(output_keys.difference(o_keys))
for k in new_keys:
original_record[k] = self.output[k]
self.output = original_record
try:
with open(filepath, 'w') as outf:
json.dump(dict(self.output), outf)
except:
self.error('Failed to save flw.logger.output as results')
def check_is_jsonable(self, x):
try:
json.dumps(x)
return True
except:
return False
def output_to_jsonable_dict(self):
for key, value in self.output.items():
if not self.check_is_jsonable(value):
try:
self.output[key] = str(self.output[key])
self.warning("flw.logger.output['{}'] is not jsonable, and is automatically converted to string.".format(key))
except:
del self.output[key]
self.warning("Automatically remove flw.logger.output['{}'] from logger, because it is not jsonable and is failed to convert into string. ".format(key))
return
def write_var_into_output(self, var_name=None, var_value=None):
"""Add variable 'var_name' and its value var_value to logger"""
if var_name == None: raise RuntimeError("Missing the name of the variable to be logged.")
self.output[var_name].append(var_value)
return
def register_variable(self, **kwargs):
"""Initialze the logger in utils.fflow.initialize()"""
for k, v in kwargs.items():
setattr(self, k, v)
return
def show_current_output(self, yes_key=['train', 'test', 'val'], no_key=['dist']):
for key, val in self.output.items():
a = [(yk in key) for yk in yes_key]
nf = [(nk not in key) for nk in no_key]
if np.all(nf) and np.any(a):
try:
content = self.temp.format(key, val[-1])
except:
content = "{}:".format(key)+str(val[-1])
self.info(content)
def get_output_name(self, suffix='.json'):
if not hasattr(self, 'option'): raise NotImplementedError('logger has no attr named "option"')
header = "{}_".format(self.option["algorithm"])
if hasattr(self, 'coordinator'):
for para, pv in self.coordinator.algo_para.items():
header = header + para + "{}_".format(pv)
else:
if self.option['algo_para'] is not None:
header = header + 'algopara_'+'|'.join([str(p) for p in self.option['algo_para']])
output_name = header + "M{}_R{}_B{}_".format(self.option['model'], self.option['num_rounds'], self.option['batch_size'])
if self.option['num_steps']<0:
output_name = output_name + ("E{}_".format(self.option['num_epochs']))
else:
output_name = output_name + ("K{}_".format(self.option['num_steps']))
output_name = output_name + "LR{:.4f}_P{:.2f}_S{}_LD{:.3f}_WD{:.3f}".format(
self.option['learning_rate'],
self.option['proportion'],
self.option['seed'],
self.option['lr_scheduler'] + self.option['learning_rate_decay'],
self.option['weight_decay'],
)
output_name = output_name + '_SIM{}_AVL{}_CN{}_CP{}_RS{}_LG{}'.format(
self.simulator if hasattr(self, 'simulator') else 'None',
self.option['availability'],
self.option['connectivity'],
self.option['completeness'],
self.option['responsiveness'],
self.__class__.__name__,
)
output_name = output_name + suffix
return output_name
def get_output_path(self):
if not hasattr(self, 'option'): raise NotImplementedError('logger has no attr named "option"')
return os.path.join(self.task_path, 'record')
def get_log_path(self):
return os.path.join(self.task_path, 'log')
def get_time_string(self):
return time.strftime('%Y-%m-%d-%H-%M-%S')
def turn_early_stop_direction(self):
"""
_es_direction=1 infers that a higher value of the validation metric is better and _es_direction=-1 means lower is better.
The default value of _es_direction is -1.
Returns:
"""
self._es_direction = -self._es_direction
def set_early_stop_direction(self, d=None):
"""
Set the direction of optimal of the early stop variable
Args:
d (int|float): if d>0, then the larger the early stop key variable is, the better the result is. if key <0, then the lower is the better one.
"""
if d is not None:
self._es_direction = int(2*(int(d>0)-0.5))
def set_early_stop_key(self, key:str=None):
"""
Set the name of the variable that will be used to check whether to early stop
Args:
key (str): the name of the variable
"""
if key is not None and isinstance(key, str):
self._es_key = key
def early_stop(self):
# Early stopping when there is no improvement on the validation loss for more than self.option['early_stop'] rounds
if self.option['early_stop']<0 or (self._es_key not in self.output): return False
score = self._es_direction*self.output[self._es_key][-1]
if np.isnan(score): return True
if self._es_best_score is None:
self._es_best_score = score
self._es_best_round = self.coordinator.current_round-1
self._es_patience = self.option['early_stop']
elif score<self._es_best_score:
self._es_counter += 1
if self._es_counter >= self._es_patience:
self.info('Early stopping after training for {} rounds.'.format(self.coordinator.current_round-1))
return True
else:
self._es_best_score = score
self._es_best_round = self.coordinator.current_round-1
self._es_counter = 0
return False
def initialize(self, *args, **kwargs):
return
def log_once(self, *args, **kwargs):
"""This method is called at the beginning of each communication round of Server.
The round-wise operations of recording should be complemented here."""
# calculate the testing metrics on testing dataset owned by coordinator
test_metric = self.coordinator.test()
for met_name, met_val in test_metric.items():
self.output['test_' + met_name].append(met_val)
val_metric = self.coordinator.test(flag='val')
for met_name, met_val in val_metric.items():
self.output['val_' + met_name].append(met_val)
# calculate weighted averaging of metrics on training datasets across participants
local_data_vols = [c.datavol for c in self.participants]
total_data_vol = sum(local_data_vols)
train_metrics = self.coordinator.global_test(flag='train')
for met_name, met_val in train_metrics.items():
self.output['train_' + met_name + '_dist'].append(met_val)
self.output['train_' + met_name].append(1.0 * sum([client_vol * client_met for client_vol, client_met in zip(local_data_vols, met_val)]) / total_data_vol)
# calculate weighted averaging and other statistics of metrics on validation datasets across clients
local_val_metrics = self.coordinator.global_test(flag='val')
for met_name, met_val in local_val_metrics.items():
self.output['local_val_'+met_name+'_dist'].append(met_val)
self.output['local_val_' + met_name].append(1.0 * sum([client_vol * client_met for client_vol, client_met in zip(local_data_vols, met_val)]) / total_data_vol)
self.output['mean_local_val_' + met_name].append(np.mean(met_val))
self.output['std_local_val_' + met_name].append(np.std(met_val))
local_test_metrics = self.coordinator.global_test(flag='test')
for met_name, met_val in local_test_metrics.items():
self.output['local_test_'+met_name+'_dist'].append(met_val)
self.output['local_test_' + met_name].append(1.0 * sum([client_vol * client_met for client_vol, client_met in zip(local_data_vols, met_val)]) / total_data_vol)
self.output['mean_local_test_' + met_name].append(np.mean(met_val))
self.output['std_local_test_' + met_name].append(np.std(met_val))
# output to stdout
self.show_current_output()
def organize_output(self, *args, **kwargs):
"""This method will be called before saving self.output"""
for key in self.output.keys():
if '_dist' in key:
self.output[key] = self.output[key][-1]
return
|