Skip to content

classification

BuiltinClassGenerator

Bases: flgo.benchmark.base.BasicTaskGenerator

Generator for the dataset in torchvision.datasets.

Parameters:

Name Type Description Default
benchmark str

the name of the benchmark

required
rawdata_path str

the path storing the raw data

required
builtin_class class

class in torchvision.datasets

required
transform torchvision.transforms.*

the transform

None
Source code in flgo\benchmark\toolkits\cv\classification\__init__.py
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
class BuiltinClassGenerator(flgo.benchmark.base.BasicTaskGenerator):
    r"""
    Generator for the dataset in torchvision.datasets.

    Args:
        benchmark (str): the name of the benchmark
        rawdata_path (str): the path storing the raw data
        builtin_class (class): class in torchvision.datasets
        transform (torchvision.transforms.*): the transform
    """
    def __init__(self, benchmark, rawdata_path, builtin_class, transform=None):
        super(BuiltinClassGenerator, self).__init__(benchmark, rawdata_path)
        self.builtin_class = builtin_class
        self.transform = transform
        self.additional_option = {}
        self.train_additional_option = {}
        self.test_additional_option = {}
        self.download = True

    def load_data(self):
        # load the datasets
        train_default_init_para = {'root': self.rawdata_path, 'download':self.download, 'train':True, 'transform':self.transform}
        test_default_init_para = {'root': self.rawdata_path, 'download':self.download, 'train':False, 'transform':self.transform}
        train_default_init_para.update(self.additional_option)
        train_default_init_para.update(self.train_additional_option)
        test_default_init_para.update(self.additional_option)
        test_default_init_para.update(self.test_additional_option)
        if 'kwargs' not in self.builtin_class.__init__.__annotations__:
            train_pop_key = [k for k in train_default_init_para.keys() if k not in self.builtin_class.__init__.__annotations__]
            test_pop_key = [k for k in test_default_init_para.keys() if k not in self.builtin_class.__init__.__annotations__]
            for k in train_pop_key: train_default_init_para.pop(k)
            for k in test_pop_key: test_default_init_para.pop(k)
        # init datasets
        self.train_data = self.builtin_class(**train_default_init_para)
        self.test_data = self.builtin_class(**test_default_init_para)

    def partition(self):
        self.local_datas = self.partitioner(self.train_data)
        self.num_clients = len(self.local_datas)

BuiltinClassPipe

Bases: flgo.benchmark.base.BasicTaskPipe

TaskPipe for the dataset in torchvision.datasets.

Parameters:

Name Type Description Default
task_path str

the path of the task

required
builtin_class class

class in torchvision.datasets

required
transform torchvision.transforms.*

the transform

None
Source code in flgo\benchmark\toolkits\cv\classification\__init__.py
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
class BuiltinClassPipe(flgo.benchmark.base.BasicTaskPipe):
    r"""
    TaskPipe for the dataset in torchvision.datasets.

    Args:
        task_path (str): the path of the task
        builtin_class (class): class in torchvision.datasets
        transform (torchvision.transforms.*): the transform
    """
    class TaskDataset(torch.utils.data.Subset):
        def __init__(self, dataset, indices, perturbation=None, pin_memory=False):
            super().__init__(dataset, indices)
            self.dataset = dataset
            self.indices = indices
            self.perturbation = {idx:p for idx, p in zip(indices, perturbation)} if perturbation is not None else None
            self.pin_memory = pin_memory
            if not self.pin_memory:
                self.X = None
                self.Y = None
            else:
                self.X = torch.stack([self.dataset[i][0] for i in self.indices])
                self.Y = torch.LongTensor([self.dataset[i][1] for i in self.indices])

        def __getitem__(self, idx):
            if self.X is not None:
                if self.perturbation is None:
                    return self.X[idx], self.Y[idx]
                else:
                    return self.X[idx]+self.perturbation[self.indices[idx]], self.Y[idx]
            else:
                if self.perturbation is None:
                    if isinstance(idx, list):
                        return self.dataset[[self.indices[i] for i in idx]]
                    return self.dataset[self.indices[idx]]
                else:
                    return self.dataset[self.indices[idx]][0] + self.perturbation[self.indices[idx]],  self.dataset[self.indices[idx]][1]

    def __init__(self, task_path, buildin_class, transform=None):
        """
        Args:
            task_path (str): the path of the task
            builtin_class (class): class in torchvision.datasets
            transform (torchvision.transforms.*): the transform
        """
        super(BuiltinClassPipe, self).__init__(task_path)
        self.builtin_class = buildin_class
        self.transform = transform

    def save_task(self, generator):
        client_names = self.gen_client_names(len(generator.local_datas))
        feddata = {'client_names': client_names, 'server_data': list(range(len(generator.test_data))),  'rawdata_path': generator.rawdata_path, 'additional_option': generator.additional_option, 'train_additional_option':generator.train_additional_option, 'test_additional_option':generator.test_additional_option, }
        for cid in range(len(client_names)): feddata[client_names[cid]] = {'data': generator.local_datas[cid],}
        if hasattr(generator.partitioner, 'local_perturbation'): feddata['local_perturbation'] = generator.partitioner.local_perturbation
        with open(os.path.join(self.task_path, 'data.json'), 'w') as outf:
            json.dump(feddata, outf)
        return

    def load_data(self, running_time_option) -> dict:
        # load the datasets
        train_default_init_para = {'root': self.feddata['rawdata_path'], 'download':True, 'train':True, 'transform':self.transform}
        test_default_init_para = {'root': self.feddata['rawdata_path'], 'download':True, 'train':False, 'transform':self.transform}
        if 'additional_option' in self.feddata.keys():
            train_default_init_para.update(self.feddata['additional_option'])
            test_default_init_para.update(self.feddata['additional_option'])
        if 'train_additional_option' in self.feddata.keys(): train_default_init_para.update(self.feddata['train_additional_option'])
        if 'test_additional_option' in self.feddata.keys(): test_default_init_para.update(self.feddata['test_additional_option'])
        if 'kwargs' not in self.builtin_class.__init__.__annotations__:
            train_pop_key = [k for k in train_default_init_para.keys() if k not in self.builtin_class.__init__.__annotations__]
            test_pop_key = [k for k in test_default_init_para.keys() if k not in self.builtin_class.__init__.__annotations__]
            for k in train_pop_key: train_default_init_para.pop(k)
            for k in test_pop_key: test_default_init_para.pop(k)
        train_data = self.builtin_class(**train_default_init_para)
        test_data = self.builtin_class(**test_default_init_para)
        test_data = self.TaskDataset(test_data, list(range(len(test_data))), None, running_time_option['pin_memory'])
        # rearrange data for server
        server_data_test, server_data_val = self.split_dataset(test_data, running_time_option['test_holdout'])
        task_data = {'server': {'test': server_data_test, 'val': server_data_val}}
        # rearrange data for clients
        local_perturbation = self.feddata['local_perturbation'] if 'local_perturbation' in self.feddata.keys() else [None for _ in self.feddata['client_names']]
        for cid, cname in enumerate(self.feddata['client_names']):
            cpert = None if  local_perturbation[cid] is None else [torch.tensor(t) for t in local_perturbation[cid]]
            cdata = self.TaskDataset(train_data, self.feddata[cname]['data'], cpert, running_time_option['pin_memory'])
            cdata_train, cdata_val = self.split_dataset(cdata, running_time_option['train_holdout'])
            if running_time_option['train_holdout']>0 and running_time_option['local_test']:
                cdata_val, cdata_test = self.split_dataset(cdata_val, 0.5)
            else:
                cdata_test = None
            task_data[cname] = {'train':cdata_train, 'val':cdata_val, 'test': cdata_test}
        return task_data

__init__(task_path, buildin_class, transform=None)

Parameters:

Name Type Description Default
task_path str

the path of the task

required
builtin_class class

class in torchvision.datasets

required
transform torchvision.transforms.*

the transform

None
Source code in flgo\benchmark\toolkits\cv\classification\__init__.py
276
277
278
279
280
281
282
283
284
285
def __init__(self, task_path, buildin_class, transform=None):
    """
    Args:
        task_path (str): the path of the task
        builtin_class (class): class in torchvision.datasets
        transform (torchvision.transforms.*): the transform
    """
    super(BuiltinClassPipe, self).__init__(task_path)
    self.builtin_class = buildin_class
    self.transform = transform

GeneralCalculator

Bases: flgo.benchmark.base.BasicTaskCalculator

Calculator for the dataset in torchvision.datasets.

Parameters:

Name Type Description Default
device torch.device

device

required
optimizer_name str

the name of the optimizer

'sgd'
Source code in flgo\benchmark\toolkits\cv\classification\__init__.py
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
class GeneralCalculator(flgo.benchmark.base.BasicTaskCalculator):
    r"""
    Calculator for the dataset in torchvision.datasets.

    Args:
        device (torch.device): device
        optimizer_name (str): the name of the optimizer
    """
    def __init__(self, device, optimizer_name='sgd'):
        super(GeneralCalculator, self).__init__(device, optimizer_name)
        self.criterion = torch.nn.CrossEntropyLoss()
        self.DataLoader = torch.utils.data.DataLoader

    def compute_loss(self, model, data):
        """
        Args:
            model: the model to train
            data: the training dataset
        Returns: dict of train-one-step's result, which should at least contains the key 'loss'
        """
        tdata = self.to_device(data)
        outputs = model(tdata[0])
        loss = self.criterion(outputs, tdata[-1])
        return {'loss': loss}

    @torch.no_grad()
    def test(self, model, dataset, batch_size=64, num_workers=0, pin_memory=False):
        """
        Metric = [mean_accuracy, mean_loss]

        Args:
            model:
            dataset:
            batch_size:
        Returns: [mean_accuracy, mean_loss]
        """
        model.eval()
        if batch_size==-1:batch_size=len(dataset)
        data_loader = self.get_dataloader(dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=pin_memory)
        total_loss = 0.0
        num_correct = 0
        for batch_id, batch_data in enumerate(data_loader):
            batch_data = self.to_device(batch_data)
            outputs = model(batch_data[0])
            batch_mean_loss = self.criterion(outputs, batch_data[-1]).item()
            y_pred = outputs.data.max(1, keepdim=True)[1]
            correct = y_pred.eq(batch_data[-1].data.view_as(y_pred)).long().cpu().sum()
            num_correct += correct.item()
            total_loss += batch_mean_loss * len(batch_data[-1])
        return {'accuracy': 1.0*num_correct/len(dataset), 'loss':total_loss/len(dataset)}

    def to_device(self, data):
        return data[0].to(self.device), data[1].to(self.device)

    def get_dataloader(self, dataset, batch_size=64, shuffle=True, num_workers=0, pin_memory=False, drop_last=False):
        if self.DataLoader == None:
            raise NotImplementedError("DataLoader Not Found.")
        return self.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=pin_memory, drop_last=drop_last, collate_fn=self.collect_fn)

compute_loss(model, data)

Parameters:

Name Type Description Default
model

the model to train

required
data

the training dataset

required
Source code in flgo\benchmark\toolkits\cv\classification\__init__.py
342
343
344
345
346
347
348
349
350
351
352
def compute_loss(self, model, data):
    """
    Args:
        model: the model to train
        data: the training dataset
    Returns: dict of train-one-step's result, which should at least contains the key 'loss'
    """
    tdata = self.to_device(data)
    outputs = model(tdata[0])
    loss = self.criterion(outputs, tdata[-1])
    return {'loss': loss}

test(model, dataset, batch_size=64, num_workers=0, pin_memory=False)

Metric = [mean_accuracy, mean_loss]

Parameters:

Name Type Description Default
model required
dataset required
batch_size 64
Source code in flgo\benchmark\toolkits\cv\classification\__init__.py
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
@torch.no_grad()
def test(self, model, dataset, batch_size=64, num_workers=0, pin_memory=False):
    """
    Metric = [mean_accuracy, mean_loss]

    Args:
        model:
        dataset:
        batch_size:
    Returns: [mean_accuracy, mean_loss]
    """
    model.eval()
    if batch_size==-1:batch_size=len(dataset)
    data_loader = self.get_dataloader(dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=pin_memory)
    total_loss = 0.0
    num_correct = 0
    for batch_id, batch_data in enumerate(data_loader):
        batch_data = self.to_device(batch_data)
        outputs = model(batch_data[0])
        batch_mean_loss = self.criterion(outputs, batch_data[-1]).item()
        y_pred = outputs.data.max(1, keepdim=True)[1]
        correct = y_pred.eq(batch_data[-1].data.view_as(y_pred)).long().cpu().sum()
        num_correct += correct.item()
        total_loss += batch_mean_loss * len(batch_data[-1])
    return {'accuracy': 1.0*num_correct/len(dataset), 'loss':total_loss/len(dataset)}